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1NTRODUCT.ION 

Boundary layer  skin-friction drag on an a i rc raf t  accounts for 

approximately 40% o f  the total  vehicle drag.  Therefore, any substantial 

reduction i n  skin-friction d r a g  would lead t o  great saving i n  fuel. Skin- 

f r ic t ion drag is  induced a t  both laminar and tu rbu len t  conditions. Laminar 

flow (low skin-friction)  is   l imited t o  surfaces near  the  leading  edge, 

while turbulent flow ( h i g h  skin-friction) is dominant on the r e s t  o f  the 

vehicle. Thus, any effective reduction i n  skin-friction drag should come 

from that   par t  due t o  turbulent  flow, and i t  has been suggested t h a t  this 

may be accomplished by use of compliant surfaces. 

Skin-friction  drag  reduction  using  compliant  surface is  a unique 

concept. Its main advantage is simplicity; no slots, ducts, or  internal 

equipment of any nature  are used. I t  requires  only a surface  with  certain 

characterist ics which would interact  favorably w i t h  the flow. Kramer [ l ]  

is  credited w i t h  the original  idea  of  drag  reduction by using compliant 

surfaces, based on his observations of d o l p h i n s  swimming in  water. 

Numerous experimental and theoretical  studies have  been undertaken t o  

explain the phenomenon of drag  reduction by compliant surfaces. A l i s t  of 

references and discussion o f  such resul ts   are  given by Ash, e t  a l .  [2,3,41. 

So far, there is no theory which  can explain  satisfactorily such a  pheno- 

menon. However, some mechanisms  have been postulated as possible explana- 

tions. One postulate  states  that  the motion of the compliant surface 

delays the transit ion from laminar t o  turbulent boundary layer. Another 

assumes tha t  the motion of the compliant surface  alters the structure of 

the fu l ly  turbulent layer. The la t ter   postulate  appears t o  be  more l ikely.  

Accordingly, Ash, e t  al .  [3] have  proposed two models for the alteration 



SUMMARY 

Some tentative compliant wall structures designed for possible  skin 

fr ic t ion d rag  reduction  are  investigated. Among the  structural models 

considered i s  a ribbed membrane backed by polyurethane o r  PVS plastisol.  

This model is  simplified as a beam placed on a viscoelastic  foundation  as 

well a s  on a s e t  of evenly spaced supports. The t o t a l  length of the beam 

may be e i ther   f in i te  or in f in i te ,  and the  supports may be ei ther   r igid or 

e last ic .  Another structural model considered i s  a membrane  mounted over 

a series of pre-tensioned  wires,  also  evenly  spaced, and the  entire mem- 

brane i s  backed by an air   cavity.  Al l  these  structural models belong t o  the 

general class of periodic  structures  for which a simple  mathematical 

analysis i s  possible. The forcing  pressure  field i s  idealized as a frozen 

random pattern convected downstream a t  a characteristic  velocity. The 

results  are given in terms of the  frequency  response  functions of the 

system, the  spectral  density of the  structural motion, and the  spectral 

density of the boundary-layer pressure  including the effect  of structural 

motion. These results  are used in a parametric  study of structural con- 

figurations capable of generating  favorable wave lengths, wave amplitudes 

and  wave speeds in  the  structural motion for  potential drag reduction. 



of the  structure of  the boundary layer. In the f i r s t  model, the change  of 

boundary-layer s t ructure  i s  a t t r ibuted  to   the  direct  coupling  interaction 

a t  the  fluid-wall  interface, and i n ,  the second model i t  is assumed that 

the  surface  radiates  acoustical  disturbances which alter  the  distribution 

of  turbulent energy from the  large-scale  eddies t o  the  smaller ones. 

In  both models proposed i n  [3], desirable  interactions of the surface 

w i t h  a turbulence  field can be induced in one of three.possible Hays; us ing  

an active  wall, a passive resonant  wall, or a flow-triggered  wall. 

The first. type is one tha t  is mechanically or e lec t r ica l ly   d r iven   a t  

prescribed  frequency,  amplitude, wave speed and shape. The objective i s  

t o  o b t a i n  a forced narrow-band surface motion a t  a predetermined  frequency 

and amp1 i tude. 

The second type, a passive  resonant  compliant  wall, has been the most 

commonly-used experimental  configuration i n  the  past. In this  case,  the 

compliant  wall is  excited by the  pressure  field  to  establish a resonant 

mode. A favorable  interaction would occur if  t h i s  resonant mode  would 

vibrate i n  a frequency tha t   f a l l s  w i t h i n  the  energy-containing  spectral 

range  of  the  turbulence. 

The flow-triggered  wall  (or i n  the  true  sence of the word, an ideal 

compliant  wall) is one that  responds t o  all  the  turbulence "bursts", not 

only t o  a few "bursts" as i n  the  other two types. Although this k ind  of 

a compliant  surface may be the most effective i n  drag reduction, i t  i s  

extremely d i f f i cu l t  or even impossible t o  design such an ideal  surface. 

Several  possible  structural  configurations have been suggested for  

passive  compliant  surfaces: membrane surfaces,  rigidly backed slabs, 

laminated structures,  and periodic  structures  (structures which are 

composed of identical units repeated a t  equal distances). Of all   these 
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configurations,  periodic  structures have received the least  attention. 

I n  this investigation,  therefore,  the  design of periodic  structures  as 

tentative compliant surfaces  will be emphasized. In particular,  two 

models of periodic  structures  will be investigated: a ribbed membrane 

backed by a soft  material such as  polyurethane o r  PVS plast isol ,  and  a 

membrane backed by an air   cavity.  In the f i r s t  model, the s t ruc ture   i s  

assumed t o  be resting on a viscoelastic  foundation which  would approximate 

the behavior of  polyurethane or  PVS plastisol mentioned above. Also,  in 

this  analysis,  the  ribbed two-dimensional membrane i s  replaced by a one- 

dimensional periodic beam on equi-spaced supports.  The supports, which 

are  simplified  versions  of  ribs,  provide  rotational and transversal 

e las t ic   res t ra ints   to  the beam. 

In the second  model,  a number of circular  solid  wires  are  attached 

(glued) t o  a two-dimensional membrane. In the analysis, the wires  are 

treated  as  pre-tensioned  strings. 

In e i ther  model the structure can be of f i n i t e  o r  in f in i te  l e n g t h .  

For t he   f i r s t  model, both cases  will be considered  while  only an 

inf ini te ly  long structure  will be considered  for the second one. 

In order t o  achieve d rag  reduction,  the proposed design should 

possess  certain dynamic characterist ics which will  interact  favorably 

w i t h  the flow.  In other words, the motion of the compliant surface when 

excited by a turbulence  field should have the wave shape,  propagation 

speed, wave length, and amplitude which  would  make such interaction 

possible. In the absence of a theory which  can predict such characteris- 

t i cs ,  wind  tunnel measurements have been the only available  source of 

information.  Historically, experimental investigations have  been carried 

out a t  low subsonic  speeds.  This i s  probably  because of the  fact   that  i t  
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is easier  to  control the experiment a t  such speeds.  .Accordingly, Ash, 

e t  al .  [3,4] have  done some experimental investigations a t  a speed range 

of 50-150 f t /sec  to   ver i fy  some of the  previous  experiments on one  hand, 

and to   t ry   to   es tab l i sh  a compliant  drag  reduction  theory on the other hand. 

Based on their wind t u n n e l  measurements, they have suggested that  the 

desired motion o f  a possibly-successful  compliant  surface should have 

' the following  characteristics.  (Private communication from R .  .L. Ash) 

(1) the maximum amplitude of the  vibration should be (1-3) x lo-' 

inches 

(2) the  resonant  frequency should not exceed 1500 Hz 

(3)  the wave 1 ength of the  surface motion should not exceed 

.l inches. 

In this analysis, the above characteristics will act   as   cr i ter ia  

for  the  design of a tentative compliant  surface. However,  one should 

keep i n  mind that  the  actual goal of compliant  drag  reduction is to  

reduce  drag  not  only a t  such low speeds, b u t  most importantly a t  h i g h  

subsonic and supersonic speeds which represent a range w i t h i n  which 

most vehicles f ly .  

The response of f i n i t e  beams t o  a convected pressure  field has 

been analyzed i n  the  past by calculating the principle modes' of the 

system, and  by studying  the  forced motion i n  each significant mode [5-81. 

.Alternatively,  transfer  matrix  techniques have  been developed by L i n ,  e t  

a l .  [9-121 to  calculate  the response directly without  determination of 

normal  modes. In the  case of periodic  structures,  accurate computation 

of normal  modes is extremely diff icul t .  Mead and associates [13-171 

have used another  approach, namely the wave propagation approach which 

is originally due to  Brillouin [18]. T h i s  approach works well and w i t h  
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great  simplicity  for  periodic  structures!fof  infjnite  length.  It  can  also 

be  applied  to  finite  periodic  structures  but the.procedure  becomes  more 

involved. . / , .  ._ 

In  this  investigation,  the  wave  propagation approach-also will be 
used to obtain  a  closed-form  solut.ion  fora-the  structural  response. 

However, the  analysis  differs  from  that  of  Mead  in  two  respects:  first; 

it takes  into  consideration  the  effect of the  foundation  (or  the  air gap) 

on  the  structural  response, and second1y:;i.t  incorporates  the  effect of the 

interaction  between  the  fluid and the  motion.of  the  structure.  Finally, 

the  result  of  a  parametric  study  aiming  at  an  optimal  design  which has 

the desired  surface  motion  will  be  presented. 
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I. THE EXCITING  PRESSURE  FIELD 

The s t ruc ture   i s  assumed to  be excited by a turbulent  pressure  field 

stemming from a fully  turbulent boundary layer. The pressure  f ie ld   is  

random i n  nature and can be described  only by s ta t is t ical   quant i t ies .  

From the standpoint of the structural  response,  the  simplest mathematical 

model for  such  a f i e ld  is one tha t  is s t a t i s t i c a l l y  homogeneous i n  space 

and convected i n  a given direction as a frozen  pattern, The frozen  pattern 

assumption is known as  Taylor's  hypothesis.  Since  experimental measurements 

of the  cross-correlation or cross-spectrum of a boundary layer  turbulence 

generally show some degree  of  decay i n  addition  to  convection, Lin  and 

Maekawa [19] recently have proposed  a superposition scheme  where a  decaying 

turbulence can be constructed from inf in i te ly  many frozen-pattern components. 

Although the new  model m i g h t  represent a real  turbulence more accurately, 

Taylor's  hypothesis  will be used i n  this investigation  for computational 

savings. 

Therefore, the turbulent  pressure  field will be treated  as a random 

function of x - U c t  and y where Uc is the-convection  speed, t is  time, 

and the flow i s  assumed t o  be convected i n  the  positive  x-direction. 

Under this assumption, the  pressure  over a panel of width b can be 

expressed  as a Fourier-Stieljes  integral 

P(x - Uct.y) = e I- i b t  - kx) dF(k,y) 
-OD 

where 

w = frequency i n  radians  per second 

k = wave number, (k = &) . 
uC 

I t  can be  shown that   s ince P is s t a t i s t i c a l l y  homogeneous 
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where TI = y1 - y2, E { - 1  represents the ensemble average, an asterisk 

denotes  the complex conjugate and 5 ( k , q )  i s  the wave-number cross-spectrum 

referred  to  a  coordinate frame moving w i t h  velocity Uc. To simplify further 

our analysis, we assume that  can be expressed  in  a  separable form as  

P 

P 
- 
Sp(k, ,d  = S p ( k l )  g(n) 

where g ( n )  is the  cross-correlation of turbulence i n  the y-direction. In 

some cases the functional form of g can be determined analytically. For 

instance, i n  the  case of homogeneous and isotropic  turbulence, g(n)  i s  

g iven  by Lin [20] 

where L i s  the scale, of turbulence,  a = [l  + ( L k l )  1 , and K,,,(-) i s  the 

Bessel function of the second  kind (Although the above expression for  g ( n )  

is  derived  for the cross-spectrum of turbulence  velocity, i t   i s  reasonable 

to  use the same form for  the  pressure u s i n g  a different  value  for L ) .  

However, based on experimental  data  for homogeneous boundary layer  turbulence, 

Mastrello [21] expresses g ( q )  as 

2 4  

where 6 i s  a characteristic  length  proportional t o  the boundary layer 

thickens 6.  In what  follows we will use Mastrello's expression, E q .  (1.2). 

Expanding Eq.  (1.2) i n  a  Fourier  series, 
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The Fourier  coefficients f n ' s   a r e  computed  from 

Now, the separabili ty assumption of  7 i s  equivalent t o  replacing 
P 

Eq. (1.1) by 

a 

~ ( x  - uct,y) = G(Y) j e i(ot - kx) 
d F ( k )  (1.5) 

-m 

w i t h  

EIG(Y1) G * ( Y ~ ) )  = g(n) 

I f  G(y) i s  also expressed as  a Fourier  series 

then by use of the  orthogonality of Fourier  coefficients we can show that  

I f n l  = f n  
- 2  

9 



In the  case  of a one-dimensional structure,  the  varjation of a 

pressure  field i n  the  y-direction becomes imaterial.  Therefore,  the 

pressure P may  be expressed  as 

I t  can be seen from Eq, (1.5)  or Eq.  (1.7)  that   if  a linear  analysis 

is  valid,   the  solution  to  the  present random vibration problem  can  be 

constructed from the  solution  of a fundamental problem  where the 

exci ta t ion  is  

(a) a u n i t  plane wave, e fo r   t he  one-dimensional case, 

( b )  a y-direction modulated u n i t  plane wave, e i(wt-kx) ,inrry/b 

for   the two-dimensional case. 

I t  seems proper t o  call  such a fundamental solution a frequency  response 

function. 

In the  following  sections, we will be mostly concerned with  obtaining 

the  frequency  response  functions  for  different  structural  configurations 

corresponding t o  a u n i t  excitation o f  the  type  either  (a) o r  (b) mentioned 

above.  In  each case,  the  frequency  response function can then be used to  

compute the  spectral  density o f  the  structural  response. The spectral 

analysis of the radiated  pressure induced by the  structural motion also 

will be presented. 

10 



11. AN INFINITE BEAM RESTING ON A VISCOELASTIC  FOUNDATION 

The  configuration  of such a beam is  shown i n  Fig.  -1 (a and b) .  

Fig. 1-a represents  the  case when the supports  are  considered  to be 

inf ini te ly  r i g i d  i n  the  transverse  direction, while Fig.  1-b represents 

the case when these  supports  are  transversely  elastic. As can be seen 

from Fig. 1,   the  structure is  composed  of  an infinite number of bays, 

each of  length a. Also, i t  i s  t o  be noted that  the  representation o f  the 

viscoelastic  foundation  as shown i n  Fig. 1 is just one of several  possible 

representations [27-301. The inclusion of the s p r i n g  k, is to  accommodate 

some viscoelastic  materials which  deform instantaneously under loading.  

The values  of  the s p r i n g  constants k l ,  k2 and the damping coefficient qv 

depend on the  specific chosen material. 

The equation of motion of such a beam a t  any location n o t  immediately 

over a support is given by 

a4w .. D - +  mbW + F = 
ax 4 + p11 

z=o 

where 

P = the  turbulence  pressure  field  neglecting  the  effect of the beam 

motion 

P1 = additional  pressure  generated by the beam motion 

F = foundation  reaction 

W = transverse displacement of the beam 

mb = mass of the beam per u n i t  length 

D = flexural  rigidity of the beam. 

Since we are   interested,   a t  this stage, i n  obtaining  the  frequency  response 

function  only, a u n i t  excitation e will be used instead of the 

11 
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Fig. 1-a In f i n i t e   Pe r iod i c  Beam on  a Viscoelastic Foundation  (Transversely  Rigid Supports) 

. 

Z 

Fig. 1-b I n f i n i t e   Pe r iod i c  Beam on a Viscoelastic Foundation  (Transversely  Elastic  Supports) 



random pressure P. Also, if the periodic beam considered is actually a 

strip of periodically supported plate, the more qppropriate value for D 

to be used in the computations would be the bending rigidity o f  the plate. 

By the same token, m,, and  F would be mass and force per unit area, 

respectively. 

The reaction of  the foundation, F, is obtained as follows: 

From Fig. 2, one  finds that 

w = w l +  w2 
where 

W1 = relative displacement of point a w.r.t. point b 

W2 = relative displacement of point b w.r.t. point c 

(which is the absolute value of the displacement of point b) 

F = klW1 (2 2) 

F = k2W2 + qv W2 (2.3) 

To obtain an expression relating the reaction F and the total deflection W, 

differentiate both sides of Eq. (2 .2)  

F = k l W  , (2.4) 

multiply Eq. (2 .2 )  'by k2, Eq. (2.4) by n,, Eq. (2.3) by kl and add, 

(k1 + l$)F + nv F klk2(W, + W2) + kl nv (W1 + W2) 

or (kl + k2)F + nv F = k,k2W + kl qv (2.5) 

Eq. (2.5) can be written in a more suitable form (for future discussions 

concerning the effect of  the spring k2) by dividing both sides by kp 

kl nv K1 nv 
k2 k2 k2 

(1 + -)F + - F = KIW + - W 

13 
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Fig. 2 Viscoelastic Foundation 
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Combining Eqs. (2.1)  and (2.6), one  obtains 

j 

For an infinitely long   per iodic  beam, the wave propagation  approach 

due t o  Br i l l ou in  and Mead can  be  applied  most  conveniently:  Rewriting the 

exc i t i ng   un i t   p l ane  wave i n  the form, 

where po = kR is  seen t o  be the phase difference o f  the exc i t i ng  wave a t  

two points  separated by a d i s t ance  R along the beam.  However, the structural 

response is n o t  restricted t o  this phase.difference  a l though i t  must be 

s p a t i a l l y   p e r i o d i c  w i t h  period R.' This   per iodic i ty   condi t ion  is s a t i s f i e d  
. . * ,  

by expressing  the  s t ructural   response  as   fol lows:  

w i t h  pn = po + 2nrr. T h i s  

supports.  Also, i t  is  t o  

d i f f e r e n t  wave components 

namely 

series must be made t o  satisfy the B.C.'s a t  the 

be observed t h a t  corresponding  to different vn, 
t rave l   a long  the beam a t  difference speeds; 

(2.70) 

Each wave component can travel i n  either the pos i t i ve   o r   nega t ive   d i r ec t ion  

depending  on the s i g n   o f  pn. For  small  values of ] p n l ,  the absolute   value 

15 



o f  C, can be very large. Th'e physical  implication is tha t  a subsonically 

convected excitation can generate  supersonic waves i n  the  structure. On 

the other hand, subsonic waves also can be generated by supersonically 

convected excitations  since C, become smaller  for  large  values of n.  

Another interesting relati.onship  involves  the wave l eng ths  of the 

response components. -If  the usual definition of wave .length is modified 

so. that  a negative-going wave has a negative wave length, then  the wave 

l e n g t h ,  X,, is  re la ted  to  Cn by 

X,/C, = constant 

Thus,  slower traveling waves  have shorter wave lengths. 

Now, t o  solve Eq. (2.7) for  the displacement W ,  the  reactive  pressure 

P1 has t o  be expressed i n  terms of W. The pressure P1 which is  induced by 

the structural motion on the upper side of the beam is  governed by the 

convected wave equation 

(- + v x) P1 a a 2 2  
a t  = al V P, 

2 

where V = the flow velocity 

al = the speed of sound 

vb2 = Laplace operator 

T h i s  induced pressure is subjected to  the boundary condition 

a a p ( - + V - )  w = - -  1 a t  ax az 
2 

z=o 

and the  radiation  condition  that i t  propagates i n  the domain z < 0. 

(2.11) 

(2.12) 

The solution  to Eq. ( Z . l l ) ,  taking  into account the above conditions, is 

given by Morse and Ingard [22]: 

16- 



(2.13) 

where pi = f lu id   dens i ty   sur rounding  the beam ( a i r )  

C, = the propagation  speed  of the n t h  wave component of  the response 

W, = n t h  component  of the displacement 

= An e i (w t  - I+, X/R) 6 

Some general  comments about the express ion   for  P1 as   given i n  Eq. (2.13) 

are  i n  order:  

(i ) When Cn = V the contr ibut ion  of  such wave component t o  P1 is zero. 

( i i )  When ICn  - VI = a l y  P1 + 00 (shock wave e f f e c t )  

( i i i )  The n t h  component  of P, will g ive  a damping e f f e c t  whenever 

IC, - VI > a l .  T h i s  would occur: 

( a )  If  w is  very h i g h  which  makes Cn very   l a rge   (espec ia l ly  

when Cn i s  negative) 

(b) When V > al  and Cn i s  negative ( o r  C n  is pos i t i ve  but  

ICn - V I  i s  s t i l l   g r e a t e r   t h a n   a l )  

( i v )  The n t h  component  of P1 w i l l   a c t   a s  an added  mass if the   quant i ty  

under the square  root  s i g n  i n  Eq. (2.13) i s  negativ'e; i .e.,  

IC" - v i  a1 

( v )  When V c al  and w is  small (Cn 2 g), the n t h  component of Pl 

will be approximately  proportional  to V . 2 

Determination  of the Coeff ic ien ts  An's: 

Subs t i t u t ing  Eq. (2 .9)   in to  Eq. (2.7), one  obtains 

D 7 + C e W =  a4w 
ax + p11 

z=o 
(2.14) 
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where 

-- 
L 

1 + - kl + iorlv/k2 
k2 

(2.15) 

Up to  this point,  nothing has been said  about  the boundary conditions 

a t  the  supports. In the  following  sections, two cases will be considered: 

A. The supports  are assumed t o  be inf ini te ly  r i g i d  i n  the  transverse 

direction. 

8. The supports are  assumed t o  have some e las t ic i ty  in that  direction. 

A. TransverseTy Rigid Supports 

If  the  supports of a periodic beam are  r i g i d ,  the  displacements a t  

these  supports  are  zero. Hence, a t  the  support x = 0, 

or 

(2.16) 

(2.17) 

Thus,  the.displacement, W ,  and the  pressure, P l ,  can be expressed  as 

(the common factor eiwt will be dropped from now on for convenience) 
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where 

The coefficients An,s may be obtained by using the v i r t u  

(2  -20) 

a1  work 

principle (i.e., when all.   the  forces on and i n  the beam are i n  equi l ibr ium,  

they  should do  no vlrtual -work:thro,ugh any virtual  displacement). 

Specifically, we assume a virtual displacement 

As usual i n  complex algebra,  the  conjugate  of  the  virtual  displacement, 

namely 

i s  used i n  calculating  the v i r t u a l  work. Due t o  the  spatial  periodicity of 

the forcing  function,  the  structural response and the  virtual  displacement, 

the resul t  of an integration over an entire  structure composed of B periodic 

elements is equal t o  B times that  o f  integrating over one element. Since 

the  total   virtual work  done is  zero,  the v i r t u a l  work  done w i t h i n  each 

periodic element is also  zero and i t  i s  sufficient  to apply the v i r tua l  work 

principle t o  just one periodic u n i t .  

Now, the  contribution of the  1st  term i n  Eq. (2.14) to  the  virtual 

work is 

(2.23) 
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Note t h a t  i n  ob ta in ing  Eq. (2.23), the fol lowing  re la t ionships   have been 

used: 

S imi l a r ly ,  for the o t h e r  terms i n  Eq. (2.14) 

; m = O  

(2.26) 

(2.27) 
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The virtual work done by the rotational sp r ing ,  k,, a t  the s u p p o r t  x = 0 

is  

6vr.= kre,(0)(6Am)'(O) = krW'(0)(6Am)'(O) 

where the prime, I ,  denotes  differentiation w.r.t.x. 

6Wr = k, 
W c 

n=-m 

nfO 

i An 

. .  

(2.29) 

The total   v i r tual  work, 6W, is 

m = 6D( + &r(2) + 6rnp + 6VP 4- 6Ur = 0 (2.30) 
1 

Using Eq. (2.23) and Eqs. (2.26)-(2.30), we obtain a s e t  of simultaneous 

linear  equations  for the coefficients An's as  follows: 

(2.31) 

The structural  damping of the beam and the supports can be accounted for 

by use of complex D and k, 

D = DI(1 + inb) . 

kr = k.;(l + in,) 
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where n,, and nr are  the  loss  factors  for  the beam  and the  support  materials 

respectively. Also, introducing the nondimensional quantities 
, J  i.. 

I .  

y = ki E/D' 

a = k, !L4/Dt (2.32) 

Eq. (2.31) can  be  simplified  as ! 

where 

(2.35) 

(2.36) 

In practical applications the number  of  terms in each infinite  sum in (2.33) 
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must be truncated. The truncated version of (2.33) may he written  in a 

matrix form as 
. ,  

. .  . . (2.37) 

where 

6aj = Kronecher  delta = P . . 

The choice o f  the number o f  simultaneous  equations (=2N) depends on the 

desired accuracy in computing the values of An's.. 

In the  remainder o f  this section, two special  cases will be discussed. 

Xn t h e  f irst  ease, the  supports will be assumed t o  offer no rotational 

r e s t m i n t  to the beam, and in the second case the. foundation wil I be 

sssumed purely elast-fc. 

(1) No rotational  restraint  at the  supports (i.e., kr = 0): 

I n  chis case Eq. (2.33) becomes 

The  solution of this equation  isrmuch simpler  than that  of Eq. (2.33) 

as  to  be explained below. 

From Eq. (2.39), one  observes  that 

A,,,, +(m) = constant 

(2.39) 

(2.40) . .  

Hence, combining Eqs . (2.39) and' (2.40) 
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which readily  gives 
C 

(2.42) 

The number of terms required i n  Eq. (2.42) t o  obtain an accurate  total 

deflection can  be simply determined. First, we establish  the dominant term 

i n  the  series.  Referring t o  this term as Ad, compute the r a t io  

(2.43) 

Defining the  truncation  as -N 5 n 5 N, a reasonable  criterion  for choosing 

N is 

rn << 1 for In1 > N . 

(2) Elastic foundation: 

As can be seen from Fig.  2, the foundation can be  made e l a s t i c  by 

(a) k2 = 

or ( b )  nv = 0 

or  both. 

Case (a) 

I f  k2 -+ m, then Eq.  (2.15) becomes 

2 ce = -w "b 
+ kl 

cha 10s i 

(2.44) 

and Eq. (2.34) reduces t o  
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I 

while c (  n,m)  and S remain  unchanged. 

(2.45) 

(2.46) 

and 

Again  E(n,m)  and S are unchanged. 

Combination of cases (1) ani (2) (i.e.,  no  rational  restraint at  the 

supports  and  with  an  elastic  foundation)  will , o f  course,  lead t o  further 

simplifications. The coefficients  An's  are  obtained  most  simply  from 

Eq. (2.42) with @(m) given by  either (2.45) or (2.47). 
* 

Once  the  coefficients  An's  are  determined,  the  displacement W and 

other  related  quantities  can  be  readily  computed.  For  instance,  the  first 

derivative (w.r.t.  x), W', i s  given  by 

and 

Similarly,  the  second  derivative i s  given by 

(2.48) 

(2.49) 
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(2.51) 

Since we have substituted a u n i t  plane wave for  the  excitation 

Dressure P, the computed response as given in Eq.  (2.18) ( w i t h  the time 

variation  factor eiwt omitted) i s  actually  the frequency  response  function 

H(x,k).  Therefore, we can write 

(2.52) 

where the An's are  obtained by s o l v i n g  the  matrix  equation (2.37) or 

direct ly  from Eq.  (2.42). 

B. Transversely  Elastic Supports 

Eventually if a periodic  structure i s  used a s  a compliant surface, 

the suppor ts  are most l ikely ribs or  str ingers which  have iner t ia  and 

s t i f fness .  In this  section, we will assume t h a t  these supports can be 

replaced by springs characterized by a spring  constant kt i n  the  transverse 

direction  as shown i n  Fig.  1-b. 'The  inertia of the  supports will be 

neglected. An analysis  simil a r  t o  t h a t  of the  previous  section  will ,apply 

here. Avoiding repetition of the  previous  section,  the  differences may  be 

pointed out :  

(1 ) The displacement a t  the  internal supports are no 1 onger equal 

t o  zero and the displacement i s  given by 

43 

W(x,t) = 1 An e -ipnx/E , i w t  
n= -w 

(2.53) 

( 2 )  There will be  an additional  contribution t o  the  virtual work. 

T h i s  comes  from the  e las t ic i ty  of the  supports. Following the 
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same procedure as in   the   p rev ious   sec t ion ,   the   v i r tua l  work done 

by  kt a t  x =  0 i s  

CII 

6i$ = kt W(0) 6% = &A, An (2.54) 

Then the  re la t ionship  govern ing  the  coef f ic ients  An's becullles 

(2.55) 

where r = kt / D l ,  y and S are  the same as before, and the  expression f o r  3 

4(m) i s  given  by Eq. (2.34). 

The f i r s t  and  second derivatives  of  the  displacement  are  given by 

W 

W ( x , t )  = 1 An(-iun /&) e -ip,,x/E e i w t  
n=-w 

W 

W'(0,t) = 1 An("iun /&) e i w t  
n=-w 

and the  frequency  response  function H(x,k) i s  given  by 

W 

H(x,k) = 1 An e -ipnx/R 
n=-w 

(2.56) 

(2.57) 

(2.58) 

(2.59) 

(2.60) 

Equations (2.48)-(2.52) and (2.56)-(2.60) will be  used i n   t h e   f o l l o w i n g  

sections. 
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I t  i s  worth noting that  analyses o f  certain  special  cases  discussed . 

in the previous section, including the case of zero rotational  constraints 

a t  the supports and the  case of the elastic foundation, are also  applicable 

here  with the obvious modifications which  correspond to  the change in the 

B.C.'s a t  the supports. 

28 



:. 111. FINITE PERIODIC BEAM . ,  O N  A VISCOELASTIC  FOUNDATION 

. ,. 
The configuration of such a be'am is  shown i n  F i g .  3. F ig .  3-a shows 

. .  

a beam'wi t h  transversely r i g i d  supports,  while Fig .  3-b  shows the same  beam 

w i t h  "transvers.ely e l a s t i c  supports. ' 

. .  , .  

The response  of a finite  periodic beam to a u n i t  excitation; e i (ut- kx) 
s 

can. be viewed as consisting of  two parts: 

(1) The response of an inf ini te ly  long periodic beam w i t h  the same 

periodic element. Such a response has already been discussed i n  the 

preceding sections. 

(2)  The response  corresponding to  the  reflections from the end 

supports of t he   f i n i t e  beam. 

The  waves reflected from the  left-hand end support are  positive-going waves, 

while  the ones reflected from the r ight -hand end support  are,  naturally, 

negative-going waves. The  reflected waves are  free waves  and  can  be  viewed 

as  the  solution of the  equation of motion w i t h o u t  the  excitation wave ( i . e . ,  

by p u t t i n g  P = 0 i n  E q .  (2.14)). In  other words, the motion is  a f ree  

v i b r a t i o n  of  a semi-infinite  periodic beam. I t  i s  important t o  note that 

the t o t a l  response, which consists of par t s  (1) and ( 2 )  explained above, 

should satisfy  the boundary conditions a t  the extreme ends o f  the f i n i t e  

bkam . 
The ewation of motion for  free  vibration of the beam is given by 

The reactive  pressure P1 depends on the  displacement W. For a semi- 

infinite  periodic beam, there is  no known closed-form solution  for P1. 
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X 

+ 
z 

Fig. 3-a Finite  Periodic Beam (Transversely Rig id  Supports) 

z 

- x  

Fig.  3-b Finite  Periodic Beam (Transversely 
Elastic  Interior Supports) 
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Therefore, an i te ra t ive  procedure will be used. Since the effect  of p1 i s  

expected t o  be small we will init ially  neglect such an effect   ( i .e. ,  p u t  

PI I = 0 i n  Eq. (3.1) 1.. Next, determine P1 based on that  solution of W, 

and a new displacement will be  computed by solving Eq. (3.1) w i t h  previously 

determined P, treated'  as an external  force. This will become clearer  as 

we proceed. 

z=o 

Rewrite Eq. (3.1) (a f te r  p u t t i n g  P, = 0) as 

where E = - D . The solution of Eq. (3.2) can be written  as 

4 X n X  
w ( x >  = c An e ; o < x < a  " 

n=l 

i n  which the An's are  the four complex roots of 'R and they are 

(3.3) 

where Re, Im denote the real and imaginary parts o f  a complex quantity,  resp. 

NOW, consider a positive-going wave  which has a  propagation  constant p. 

The response produced by such a wave i n  a periodic  structure has the 

essential.  property of which: 
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vector a t   s ta t ion   ( r+ l )  = e” x vector a t   s t a t ion  ( r )  (3 .5)  

where r and (r+l) are  two stations on the periodic beam separated by a 

distance equal to  the  length of the  periodic  element, R, as shown i n  

Fig. 4. The components of such a vector can be taken  as any four  

independent l inear combinations of the  displacement and i ts  f i r s t   t h ree  

derivatives w.r. t .x .  

The coefficients An’s o f  E q .  (3 .3)  will be determined by using the 

wave property  explained above, and .the boundary conditions a t  the extreme 

ends of the beam. In what follows, two cases will be examined: transversely 

rigid  supports, and transversely  elastic  supports. 

A. Transversely Rigid Supports 

For transversely r i g i d  supports,  the  displacements a t  both, ends of 

each periodic element (x  = 0, R) are  zero.  Therefore, E q .  (3 .3)  gives 

4 

and 

1 A j = O  
j=l  

4 x .R 
1 A ~ ~ J  = O  

j=l  
(3 .7 )  

Using the wave property  expressed i n  E q .  (3 .5)  t o  re la te  the slopes a t  

x = 0 and x = R, 

~ ‘ ( 2 )  = e” W ’  (0) (3 .8)  

S u b s t i t u t i n g  Eq .  (3 .3)  i n t o  Eq .  ( 3 . 8 ) ,  we obtain 

4 x.& il 4 1 A j  X j  e J = e  1 A j X j  
j=l j=l 

(3 .9)  
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i I  
i 

station r station  r+l 

Fig. 4 A Single Periodic Element 
(Transversely Rigid  Supports) 
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Furthermore,  one can observe  (from Fig. 4) that 

"1 - kr W ' ( 1 1 )  = D W"(11)  

Since M(x) = D W''(x) , Eq. (3.10) becomes 

or 
4 
1 Aj (Xj + -X.) e = e" 1 Aj xj 2 2  kr x .R 4 

j=l D J  j=l 

(3.10) 

(3.11) 

Equations (3.6), (3.7), (3.9) and (3.11) form a  set  of  simultaneous  equations 

for the  coefficients An's. However, these  equations are  not  sufficient to 

determine the coefficients An's because  the propagation constant p is still 

unknown and the problem  will reduce  to an eigenvalue problem  as  to be 

demonstrated bel ow. 

Combining Eqs.  (3.6)  and  (3.7), one obtains 

A2 = e2 -1 {-A3e3 - A4e41  (3.12) 

where 
x.ll XIR 

e = e  J - e  ; j = 2,3,4  (3.13) 
j 

Substituting Eqs.  (3.12),  (3.13) into Eqs.  (3.9) and  (3.11)  and simplifying, 

G {AI = e" Q {AI 

where 

(3.14) 

(3.15) 

G = [  
f3-f2e;l e3 f4-fze;l  e4 

d3'S1 d4-S2 I (3.16) 
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L 

Ai R 
fi = A. 1 e - A1 e A1 

2 gi = Ai - A; ; si = Ai - I1 

di = (.xi 2 + - kr A.) e xi R 
D l  

S1 = dl + (d2 - dl) e2 -1 e3 

S2 = dl + (d2 - dl) e2 -1 e4 

Rewriting Eq.  (3.14) i n  a more suitable form as 

where c = Q” G 

(3.18) 

i = 1,2,3,4 

(3.19) 

(3.20) 

Equation  (3.19) is  a standard  eigenvalue problem i n  which e’ is  equal t o  the 

eigenvalues  of the matrix C. These eigenvalues, denoted by A1 and A2, are 

pairwise  reciprocal [15]  and they  are 

(3.21) 

where Ci i s  the (i , j ) t h  element  of  the  matrix C. The propagation constant 

p i s  given by 

(3.22) 
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The r e a l   p a r t  of  'the  propagation  constant, pR, represents  the decay o f  

the  amplitude o f  the  propagating wave wh i le  vI represents i t s  phase s h i f t .  

We can  see from Eq. (3.22) t h a t  two waves propagating i n  opposite  direct ions 

will be generated i n  the  structure.  Also,  the  eigenvectors  corresponding 

t o  v and -1.1 can be determined. O f  course, o n l y   t h e   r a t i o  between the two 

components A, and A4 o f  each eigenvector i s  unique. T h i s   r a t i o  can be used 

i n  conjunction with Eqs. (3.6) and (3.12) t o  determine  the  coeff ic ients An's 

i n  terms o f  one o f  them (say 1, A2/A1 , A3/Al and A4/A,). If we denote 

Aj/A, = 
; f o r  +ve going wave 

; for  -ve going wavz , 
(3.23) 

j=l+4 
then Eq.- (3-3) becomes 

c 4 + x.x 
w+ 1 a  e J ; +ve going wave 

j=l 
w(x) = (3  .-24) 

4 x .X 
[w- 1 a i  e J ; -ve going wave 

j = l  

where w+ and w - are  the amp1 i tudes o f  the   pos i t i ve  and negative  going waves, 

respectively, and will be determined by using  the BoC's a t   t h e  extreme ends 

o f  the beam. 

Now, t o  determine  the  induced  pressure P1, we have to   so lve Eq. (2.11 ) 

subjected t o   t h e  B*C given by Eq. (2.12)  and to   the   rad ia t ion   cond i t ion  

t h a t  it propagates i n  the  negat ive- t  domain. For  a  positive  going wave 

w i th  as a  propagation  constant, l e t  us assume t h a t  P, can  be computed 

suf f ic ient ly   accurate ly   by  the use of   the  fo l lowing  separable form: 

(3.25) 
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Iln - 
e 

Subst i tu t ing Eq. (3.30) i n t o  Eq. (2.11) .and simpl i fy ing,  we obta in  . 

where 

f"(z) n + k:fifn(z) = 0 

I . .  

(3.26) 

= [(a: - v 2 ) (i&/R) 2 2  + w.. + Ziwv(  i&/k)]/al 2 (3.27)" 
. , , .  . .  

- 
and = p + 2nsr. The s o l u t i o n   t o  Eq. (3.25) can be w r i t t e n  as 

. %  I 

iknz . ' -ik,z 
fn(z) = Bl(n) e + B3(n) 'e 

' I  . 
(3.28) 

However, impos i t ion   o f   the   rad ia t ion   cond i t ion   ( i -e . ,  Pl can  propagate i n  

the domain z < 0 only)   resul ts  i n  

and (3.29) 

I n  order  to  determine B,(n) , we use the 9-C given  by Eq. (2.12); namely 

z=o 

which  g.ives 
4 x .X 

-pl I: 1 €-u2 + 2 i u v ~ .  + v ~ x ? }  a+ w e J 3 
j=l J J j +  

iTnx/a 
Mul t ip ly ing  both  s ides o f  t h i s  equakion  by e and in teg ra t i ng  w.r.t.x 

from 0 t o  R, one obtains 

where 
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Combining Eqs. (3.30) and (3,35), the  expression for the  induced  pressure 

PI becomes 

02 i k;z - iiinx/& 
= w+ 1 i+n)  e  e 

, i w t  (3.31) 
n=-w 

and 
00 

‘11 = W+ 1 il(n) e e (3.32) 
- ivnx/a iWt 

z=o n= -OD 

Treat ing P1 as art ex te rna l   f o rce   t o  Eq. (3.2), t he   pa r t i cu la r  

so lu t ion  of Eq. (3.2) ( c a l l  it W +) i s  P 

and 

Combining Eqs. (3.3) and (3.33), we obta in  

A .X 
; +ve going wave 

j=1  

4 x .X 

J 1 a: e + Q-(x) ; -ve  going wave 
j =1  

(3.33) 

(3.34) 

(3.35) 

(3.36) 
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I -  
. " 

i ' where Q - (x)  has a similar form as  that  of Q+(x) w i t h  the .obvious changes 

which correspond t o  a negative going wave ( i  .e., replace p, a t  and w+ by 

-v, a- and w , respectively). 
J 

J 
Keeping i n  mind that  the total  solution should satisfy  the boundary 

- 

conditions a t  the extreme  ends, the unknowns w+ and w - are then determined 

from such conditions. Assuming that  both ends are  identical   to the' internal 

supports (i.e., transversely r i g i d ,  and have the same rotational  stiffness 

k r ) ,  the  total  bending moment a t  both ends should be equal t o  zero; i.e. ,' 

Mt(0) = Mt(llB) = 0 (3.37) 

where B i s  the number of the bays of the  f ini te  beam.  The total  moment a t  

e i ther  end consists o f  the  contributions of the  forced  response o f  the 

inf ini te ly  long beam and that  of b o t h  the  positive and negative going waves 

of the  semi-infinite beams. In other words, 

Mt(0) = 0 = M+(O) + "(0) + M i n f  (0) - kr  WC(0) ' (3.38) 

where Minf(x) = contribution of the  forced  response to  the bending 

moment a t  x. 

wC(x) = total   slope  at  x.  

Note that  the  rotational spr ing kr a t  x = 0 is not a part of  the  periodic 

element between x = 0 and x = R which explains  the  presence of the  last  

term of Eq. (3 .38) .  Similarly, 

Mt(RB) = 0 = M+(RB) + M - (RB) + M i n f ( R B )  (3.39) 

S u b s t i t u t i n g  for  the  values of M+, M - and WC i n  Eqs. (3.38) and (3.39),  we 

obtain two simultaneous  equations for  w+ and w - as   to  be explained below. 

Note tha t  
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and M(AB) = evB M(0). Thus, Eq. (3.38) becomes 

and Eq. (3.39) reduces t o  

= -W" (2s) i nf 

Hence,  from Eqs. (3.41) and 3.42) ,  we f ind 

B 1- W !  (0) - Winf(0)I + a2 W"(2B) kr 
- 2 D ~ n f  

w+ - 
B2a1 - Bl"2 

(3.42) 

(3.43): 

. .  

(3.44) 

where 
a1 - - 1 aj + 2  Xj  + Ql;(O) - D kr 4 +  1 a .  X. t Q;(0)3 

j=l j=l J J  

4 = 1 a i  xj 2 + kr 4 
Q1I(O) - { 1 a- X. + Q'(0)) a2 j=1 j = l  J J  - 

(3.45) 
+ 2  iVIB B1 = e uB 1 a.  X. + e j=1 J J  Q p )  
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Once w+ and w - are  determined,  the to t a l  displacement (which is the 

sum of the  displacements  given i n  Eqs. (3.36) and (2.18) w i t h  the term 

eiwt omitted) and other related  quanti  ties  are  readily  determined.  Since 

we have substituted a u n i t  plarie wave for the  excitation  pressure P, the 

computed response is actually  the  frequency  response  function H. Therefore, 

we can write 

Again, vo is the  forcing wave propagation  constant and the  coefficients 

$,Is are  obtained from Eq. (2.33). 

I t  is t o  be noted that  the  frequency  response  function or any related 

quantities  outside (0 5 x 5 a )  can be obtained most simply from E q .  (3.46) 

by using the wave property  given i n  Eq .  (3.5) (note  that f o r  a  negative- 

going wave the term e-' replaces e' i n  Eq.  (3.5). 

B. Transversely  Elastic Supports 

The analysis i n  this  section  is  basically  the same as that  of the 

previous one ( i . e . ,   f i n i t e  beam on r i g i d  supports). However, there  are 

some differences i n  the B.C.'s a t  the  internal  supports and i n  the number 

o f  f ree  waves  which may propagate i n  the  structure. This  wi 11  become clear 

as we proceed t o  calculate  the  coefficients An's of  Eq. (3 .3) .  

Using the wave property a s  expressed i n  Eq. (3 .3) ,  we obtain for 

( i  ) the d i  sp l  acement 

~ ( a )  = evW(o> 
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o r  
4 x .E 4 

j=l j=l 
1 A ~ ~ J  = e p  C A j  

( i i )  the slope 

The same relationship  as i n  Eq .  (3.9). 

( i  i i )  the moment 

The same relationship as i n  Eq. (3.11). 

( iv)  the shearing  force  (referring  to Fig .  5) 

'r+l - kt W(t) = D W"'(E) 

Substituting Eq.  (3.48) into Eq.  (3.3), 

(3.47) 

(3.48) 

(3.49) 

Combining Eqs. (3.9),  (3.11),  (3.47) and (3.49), we obtain a set of 

simultaneous  equations  relating the coefficients A.'s and the  propagation 

constant p. T h i s  s e t  of  simultaneous  equations can be written i n  a 
J 

matrix form as 

{AI = e" tj {AI (3.50) 

where {AI' = [Al A2,   A3¶ A41 (3.51) 

AIR e e X2R e X3R 

- 
e x4E 

(3.52) 
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(3.53) 

kt = the spring constant of the elastic support, 

and T denotes the transpose of a matrix. A matrix o f  the form given in 

Eq. (3.53)  is called a vandermonde matrix. Since the roots X.'s can be 
J 

is matrix is nonsingular and assumed distinct,  it can be shown that th 

therefore Q exists 123). - -1 

The remainder of the analysis can  be 

the previous section. Rewrite Eq. (3.50) 

where 

carried out parallel to that of 

in the form o f  

€{A) = ev{Al 

- "1 
C = Q  

The matrix is cross symmetric and possesses two pairs of reciproca 

eigenvalues [16). If these eigenvalues are denoted by A . ( j  = 1 * 4) 

and let 
J 

then the corresponding two pairs of propagation constants are 

lJ1 = loge A1 = -v3 

9 = log, A2 = -v4 

(3.54) 

(3.55) 

1 

' 

(3.56) 

(3.57) 
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J- , 

In other words, there will  be two free waves propagating in the positive 

direction with the propagation constants pl and p2, and two free waves 

propagating in the opposite direction with -pl and -p2. Also, the 

eigenvectors corresponding to the different propagation constants can  be 

determined.  Of course, only the normalized eigenvectors (the components 

o f  an eigenvector divided by one of them) are unique. If we denote Aj/Al 

(corresponding to pk) as a , then the disp lacement  wk due t o  the  free 
wave with propagation constant pk can be written as . .  

h 

j ,k 
. ?  

I .  

(3.58) 
. .  

where wk is the amplitude of the wave and will  be determined from the 

B.C.'s at the extreme ends of the finite beam. 

The effect of the induced pressure P1 can be accounted for in a 

manner  similar to that explained in the previous section. To do  that, 

let P l Y k  be the pressure induced by the wave with propagation constant p k ,  .. 

and  let  it  be expressed as  follows: 

(3.59) 

where f3 (n) is given by Eq. (3.30) and p is the imaginary part of pk' 

Si,milarly,  let the particular solution of Eq. (3.1), with Pll replaced 

by '1,kl 

h , .  

1 ,k I ,k 

P 
z=o 

, be wk' It is simple to show that 
z=o 

(3.60) 

(3.61) 

45 



We shall now proceed to determine  the unknowns Wk'S,. using the B.C.'s 

at the two extreme ends of the entire beam. Let the supports at the 

extreme ends be infinitely rigid in the transverse direction, and let their 

rotational stiffness be kr. Expressed mathematically, these conditions are 

4 

k= 1 
Mt(0) = 1 Kk(0) + Minf(0) - kr W;(O) = 0 

4 

k=l 

- 
Mt(2B) = 1 Mk(RB) + Minf (2B) = 0 

(3.62) 

(3.63) 

(3.64) 

(3.65) 

where Hk(x)  is the moment corresponding to IWk(x) + \$(x)>, and the 

subscript t denotes the total value (i .e. , total displacement, moment, etc.'). 

Application of Eqs. (3.62)-(3.65) results in a set of simultaneous equations 

for the unknowns wkls. These equations are combined into a matrix equation 

as follows: 

P 

and the elements of t h e  matrix V are given by 
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Once the unknowns Wk'S are determined, the total displacement is 

readily determined by summing up .the displacements corresponding to the 

free waves Wk'S and that of the infinite beam. Since  we have substituted 

a unit p.lane wave for  the excitation pressure P, the total displacement i s  

actually the frequency response function H. Therefore, 

(3.68) 

where Hinf(x, c) is given by Eq. (2.60). 
C 

Again, the frequency resp0ns.e function or other related quantities 

outside (0 " -c x < a)  can be easily'obtained from Eq.  (3.68)  by using  the 

wave property given in Eq.  (3.5) (note that for  a negative-going wave, 

e'F! replaces e' in Eq. (3.5) ). 
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I V .  TWO-DIMENSIONAL CASE: AN INFINITELY 
LONG PANEL BACKED BY AN AIR CAVITY 

In the preceding sections, some possible designs of passive  compliant 

surfaces have been analyzed us ing  simplified one-dimensional models of 

periodic beams.  Such simplified  analyses  reveal  basic  characteristics of 

real structures,  b u t  more accurate  representation  requires  the use of  two- 

dimensional model s. 

In this section, an inf ini te ly  long panel backed by an a i r   cavi ty  of 

depth d i s  considered. The side  walls of the  cavity  are assumed t o  be 

either acoustically hard or  acoustically  soft and both cases  will be dealt  

w i t h  i n  this investigation. The panel is supported by pre-tensioned 

circular  solid  wires  at   distant 11 apart. The tension i n  each wire i s  T. 

The configuration of such a panel is shown i n  F ig .  6. 

The equation of motion of such a  panel, n o t  directly over a  wire, 

i s  given by 

where 

DV W + m W = P + ( P l  - P2)1 4 .. 
P (4.1 1 

z=-d 

04 = - +  2 a4 a4 + -  a4 
ax aX2ay2 ay4 

P = the  turbulence  pressure  field ( i f  the panel were motionless) 

Pl = induced additional  pressure  generated above the panel 

P p  = pressure  variation  transmitted i n t o  the  cavity 

m = mass per u n i t  area o f  the panel 
P 
D = flexural  rigidity of the  panel. 

Again, we shall determine f i r s t   t h e  frequency  response  function. For th i s  

purpose, P is  replaced by the sth plane wave e i ( u t  - kx)  eisny/b 
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- The panel i s  assumed to  be simply  supported a t  both .sides y = 0,b. 
- 

:, Accordingly, the boundary conditions  for W are  
l '  

c i W(x,O,t) = W(x,b,t) = 0 . (4.2) 

The pressure P1 which is induced by the panel motion is  governed by 

the convective wave motion 

a a 2   2 2  (x + V s) P1 = al v p1 . 

T h i s  induced pressure, PI, i s  subjected t o  the B.C. 

a a 2  av1 1 
p ( - + v - )  w = " -  1 a t  ax aZ 

(4 .3)  

(4.4) 

and the  radiation  condition  that i t  propagates i n  the domain z < 0. 

The pressure wave Pp which i s  also generated by the panel motion and 

transmitted i n t o  the  cavity is  governed by the  equation 

a2p2 2 2 
" 

a t2 
- a  V P2 2 (4 .5 )  

where a2 is the speed of sound i n  the  cavity. If the  side  walls of the 

cavity  are  acoustically hard,  then  the boundary conditions for P2 are 

" 

aY - 0 along y = O,b 
(4.7)  

where p2 i s  the  air  density  inside  the  cavity. 
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Since the displacement must be spatially  periodic  ( in the x-direction) 

and must sa t i s fy  the B.C. (4.2), i t  is convenient t o  write the displacement 

W due t o  the excitation e i (u t  - kx) , i s ~ ~ / b  as follows: 

where 1.1, = 1.1~ + 2nr and 1.1 is the forcing wave propagation constant (= kR). 

Again, our immediate objective is t o  determine the coefficients Amn's. 
0 

In view of the B.C. given i n  Eq. (4.4),  the induced pressure P1 may 

be expressed i n  a  form similar   to   that   of  the displacement; namely 

Substituting Eq. (4.10) into Eq.  (4.3) and simplifying, one obtains 

f n  ( z )  + k,, fmn ( z )  = 0 2 
mn (4.11) 

The solution  to Eq. (4.11) can be written  as 

fmn(z) = Bl(m,n) eikmnZ + B2(m,n) e-jkrnnz 

(4.12) 

(4.13) 

Since P1 can propagate i n  the  negative z-domain only, B2(m,n) must be equal 

to  zero and Eq. (4.13) reduces t o  

fmn(z) = B,(m,n) e i k  mn z (4.14) 

Using the B.C. given by  Eq. (4.4), 
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-iploal(Cn - V )  2 !e i k  mn d 

c,((c, - v12 - a: - (y L al)2l3i  
Bl(m,n) = *mn (4.15) 

vn 

where Cn = - . I f  we substi tute Eqs. (4.14) and (4.15) into Eq. (4.10), 

we obtain 
vn 

and 

A 

where BT(rn,n) = Bl(rn,n) e -ikmnd_ Kt is to  be noted tha t  the comnents  which 

have  been  made concerning the  effect  of P1 on the  response  are  the same for 

both the one-dimensional and two-dimensional cases  (see page 16). 

Similarly, because of  the B.C. (4 .8) ,  a convenient form for  P2 i s  

(4.18) 

The B.C.'s given by Eq. (4 .7)  are  automatically  satisfied. Subs t i t u t ing  

Eq. (4.18) i n t o  Eq. (4.5) and simplifying, one obtains 

F" (z) + Kmn F( z)  = 0 2 
mn 

The solution t o  Eq. (4.19) may be written  as 

(4.19) 

(4.20) 

(4.21) 
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Imposition o f  Eq. (4.6) results i n  

D,(m.n) = D2(m,n) z ,D(m,n) 

and Fmn(z) = 2D(m,n) cos (Kmnz) 

The B.C. given by Eq. (4.9) leads  to 

m m  

' 1 1 Amn 
e-fvnx/E cos ( y y )  D(m,n) Kmn sin (Kmnd) 

m=O n=-co 

(4.22) 

(4.23) 

Multiplying both sides o f  Eq. (4.23) by eivn'x/g cos (a y) and integrating 

over (0 < x c 2; 0 < y c b ) ,  
b 

2 
m b 

= p2 w R 1 J sin (E y) cos (T y) dy m'n 
m= 1 b 

0 

which  becomes, after  simplification, 

2 P2 fd 
2 m 2m 

A,,,',,' D(m',n') = ,. f ( m ' )  sin ( K m l n ,  d )  m = l  1 AmnI l r ( m 2 * -  m' 2 (4.24) 

; m ' f O  

; m ' = O .  
where 

Substituting Eq. (4.24) . i n t o  Eq. (4.18) gives 

(4.25) 
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(4.26) 

m+r=odd 
I 

Exchanging  the  symbols r and m, and  reversing  the  summation  order in 

Eq. (4.26) to  make  it  compatible  with  the  form  of  the  displacement W ,  

the  expression  for  P2  becomes 

2 
z=-d m=l n=-m : 

O D 0 3  

P2(X,Y,Z,t)l = P2 w c 1 Amn  e , 
4m 

r=O f( r).rr(m -r ) 2 2  
r+m=odd 

(4.27) cot ($,,dl cos iwt 

cot  (Krid) 
It i s  to  De  noted  that  when tern is  imaginary,  the  quantity 

Goth ( I Krn I d) 

f Krn I 

I 

becomes - . This  means  that  the  nth  component  of P p  would 

act  as  an  added  mass. 

Determination  of  the  coefficients  Amn's: 

The  virtual  work  principle  will  be  used  to  determine  Amn's.  The 

total  virtual  work  done by all  the  forces  on and in the  panel  (including 

those  due  to  the  wires)  should  be  equal  to  zero. To  calculate  the  virtual 

work,  we will consider  one  periodic  element  only  for  the  same  reasoning 
given  for  the  one-dimensional  case.  Let  the  virtual  displacement  be 

6~ = 6~,,,, e-iunlx/L  sin ( T y )  m'sr e +iwt (4.28) 

As  usual  in  complex  algebra,  the  complex  conjugate of 61J will  be  used in 

calculating  the  virtual  work. 
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Let the virtual work  done be 6Vl . 

sin (r m y) sin (v y) cp(m,n) dx  dy 

where 

(4.29) 

Carrying out  the integration in Eq. (4.29) and simplifying, we obtain 

m, = 

Similarly, the 

(4.30) 

virtual work done by Pp is 

eiPn'"' sin (- m'r y) dx dy b 
Z=-d 

2 m 4 cot  (Krnd) 
a 1 Amnl 

m=l f(r) K,, 

b I sin (- y) cos (y y) dy m'sr 

(4.32) 

where 
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O0 4 p2 w mm' ' 4 cot (Krnd) 

r=O (m -r ) f ( r ) P  : K ~ ~  

2 .  

$(m,m',n) = 1 2 2 ^  

m+r=odd 
m'+r=odd 

! 

The virtual work done by the  excitation e i my/b ,i ( w t  - kx) i s ,  

eisTYIb dy = a (s,m',n') 
- 

where 

(4.33) 

(4.34) 

The wire, because of i t s   e l a s t i c  and inertial  properties, will produce 

shearing  forces and  moments i n  the panel along  the l ine  of attachment. The 

virtual work done by the  shearing  forces is  (say a t  x = 0)  

*mn 6Am'n' sin (-y) sin (T y)dy 
rn m'm 
b 

(4.36) 

where 
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Ew - 
IW 

PW 

Aw - 

- 
- - 
- - 
- 

T =  

and 

E(m',n) = 

Young's modulus of the wire materials 

moment o f  inertia of the  wire about the x-axis 

density o f  the  wire material 

cross sectional area o f  the wire 

tension applied to the wire 

A1 so, the virtual work done by the torsional moments in the wire is 

6Um - - 

where  G is the 

(4.37) 

(4.38) 

shear modulus, C is the Saint-Venant constant of uniform 

torsion, and Jw is the polar moment of inertia of the wire. Carrying out 

the integration in Eq. (4.38) and simplifying: 

where 

r(m',n,n') = 

(4.39) 

(4.40) 

Since  the total  virtual work must be zero, 

Substituting into this equation the values of 6W,, 6w , 6Wp, 6ws and 6Fm 

from Equations (4.29),  (4.32),  (4.34), (4.36) and (4.39), respectively, we 

obtain a set o f  simultaneous equations for  the coefficients 

p2 
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A,,,,, sin (F y) e iwt (4.54) 

NOW, the virtual work done by the pressure P2 is 
I .  

A sin (T m y) 6Amlnl eivntx" sin (T m'n y) dx  dy mn 

(4.55) 

Therefore, using Eq.  (4.55) instead of Eq.  (4.32), we obtain a new set o f  

simultaneous  linear equations for  the  coefficients Amn's 

(4.56) 

(4.57) 

and F(s,m',n') is given by Eq.  (4.43). Moreover, we can write  a truncated 

Eq. (4.56) in a matrix form 

13$naB1 {AaB} = {F(s,m,n)}  (4.58) 

where %naB = @(m,n) bm6nB + 5 A(m,B,n) 6, , - 1 

m = 1,2, . . . 
a = 1,2, . . . 

' N3 

N3 

(4.59) 
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n = -N4, . . . , -l,O,l, . . N4 
6 = -Nq, . . . , -l,O,l, . . , N4 , 

and (2N3 + 1) and (2N4 + 1) are  the number of significant modes in the y 

and x directions,  respectively. 
Once  the  coefficients %,,IS are determined from Eq. (4.42) or Eq. (4.57), 

. .  

the frequency response function o f  the structure due to the  sth component 

of  the pressure wave, e ei(wt - kx), i s  readily determined; namely 

(4.60) 
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. .  
. I  

. .  

v. STRUCTURAL RESPONSE . ' .  .. ' . 
. .  . .  

. I  

. .  

In the preceding sections, w e  were mainly  concerned . .  w i t h  the frequency 

response function, H. The next question' i s  whether or  not  desired  structural 

motion can  be generated by boundary layer  turbulence  excitations. Under 

such excitations,  the  structural response is. a random process and should be 

characterized i n  terms of s ta t is t ical   quant i t ies  such as  spectral  density, 

. . .  

mean square  value, . . . , etc. 

-If  we accept  the  frozen pattern hypothesis fo r  the turbulence  field, 

then a f te r  reaching stochastic  stationarity the displacement W may be 

expressed  as 

00 

W(x,y,t) = 1 H,(x,y,k) TS eiwt dF(k) ( 5 4  
-a s=-00 

where E(dF(kl)  dF"(k2)) = 6 ( k l  - k2) Sp(kl) dkl dk2 

% 

Combining Eqs. (5.1), (5.2) and n o t i n g  that  the Fourier components f, are 

uncorrel  ated , we get 

(5.3) 
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The spectral density o f  the displjacement., . .  QW9 is the Fourier  transform 

of the autocorrelation  function; i.e., 

or - 

For the one-dimensional case, awl becomes 

I f  the  drag  reduction mechanism hypothesized i n  Reference [33 i s  

true, then a good design is  one that can respond to  the boundary 1 ayer 

excitations i n  a desirable manner w i t h i n  a particular frequency  range. 

The root mean square.value of the  structural response attributed  to a 

frequency  range (wa,wU) is i 



where oa and mu are  the lower and upper 1 imits of the freguency  range, 

respectively. 

To carry  out the integration i n  Eq. (5.6), we need  an expression  for 

the turbulence spectrum. Considerable amount  of information is  available 

on experimentally  determined boundary-layer turbulence  spectra  at,  various 

free stream  velocities. See, fo r  example, [21,24]. In particular, B u l l  

[24] has done extensive  spectral  density measurements for  subsonic boundary 

layer  pressure  fluctuations.  Therefore, numerical calculations i n  this 

thesis are based on B u l l  's spectrum b u t  w i t h  the decay factor i n  the 

convection  direction  omitted, and the  results will be presented i n  the 

section  dealing w i t h  the numerical results. 
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9 

VI. SPECTRAL  DENSITIES OF PI AND (Pl + P j  

A. Spectral  Density  of PI 

Let the frequency  response  function of P1 due to  the  excitation 

e 

the pressure P1 can be expressed''as 

is.rry/b ,i (ut  - kx) be H1 ,s(x,y,k).  After  reaching  'stochastic  stationarity, 

00 

1 H (x,y,k) ei.wt dF(k)  s=-w s .1 ,s 

Carrying  out an analysis  similar  to t h a t  of the displacement;  the  spectral 

density  of P1 (for  the two-dimensional case) can be expressed  as 

where H (x ,  %) is  obtained from Eq. (4.17), namely 1,s uc 

for  the one-dimensional case, 

In this case H1 depends on the  configuration of the beam.  For example, 

i n  the case of an inf ini te ly  long beam on r i g i d  supports, H1 is given by 

Eq. (2.19). 

B. Spectral  Density o f  ( P  +. P i )  

Let 
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The autocorrelation  function, r-(x,y,tl ,t,), of P i s  given by 
n 

PP 

When the s tochast ic   s ta t ionari ty  of P and PI is reached, Eq. (6.7) becomes 

The spectral  density  of ^p i s  merely the Fourier  transform of 

R;;(x,y,r); i.e. , 

@BB(x,y,w) = @pp(xsy,w) + 0 (x,y,w) + 2ReIO (x,y,w)l 
PP1  PP1 

(6.9) 

Expressing p and pl as i n  Eqs. (1.5) and (6.1),  respectively, 
/ 

(6.11) 

Taking the  Fourier  transform o f  Eq. (6.11) and simplifying, 
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VII. NUMERICAL RESULTS 

In the preceding sections, we have derived expressions for the frequency 

response functions and the root mean square values of the displacements for 

a number of structural configurations. In this section, a parametric study 

will be presented' .on the effect of the changes in span l.ength, plate thick- 

ness, .. . , .etc., on the structural response as represented by the change in 
frequency response function and the root mean square value. In order to 

carry out the computations, the pressure spectrum S (w)  has to be specified 

for which we chose Bull's spectrum as shown in Fig. 7. The coordinates of 

the figure are S (w) V/qo 6* and w6*/V where 

P 

2 
P 

V = free stream velocity 

qo = dynamic pressure = pV 

6* = displacement thickness o f  the boundary layer 

1 2  

The displacement thickness is related t o  the boundary layer thickness 6 by 

6* = 6/8 (7.1) 

and according to Schlichting [25] 

B ( x )  = 0.37 x R- 1 /5 (7.2) 

where x = distance from the leading edge to the location 

where 6 is to be evaluated 

R = Vx/va = Reynold's number 

'a = kinematic viscosity o f  the fluid medium (air). 

Traditionally the boundary-layer thickness is measured to where the velocity 

is  equal to 0.99 V. 
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Fig.  7 Bull's Experimental  Spectrum 
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Bul l  has f i t t e d  h i s  experimental  data by the express.ion 

where w = w6*/V 
- 

Thus, fo r  a certain flow velocity V ,  6" can be determined and i n  t u r n  S (w) 
-,I. P .  

can be  computed. . *  

Since  the  vibration is random, a mea(sure of its magnitude i s  the root 

mean square  value which takes  the  place of the amp1 itude of a deterministic 

vibration. Also, there i s  lack  of a universally agreed upon notion 

replacing  the usual  concept  of wave length. However, we shall propose 

the term dominant wave length as a measure o f  the  spatial  variation o f  

the  total  vibration which is  computed from the dominant  peak frequency 

of the  response spectrum. 

The numerical results presented  hereafter have  been obtained by using 

a double-precision procedtire on the IBM 360/T5 digi ta l  computer. Some 

brief comments about the computer  programs involved are  discussed i n  

Appendix I. These numerical results cover: ( i )  the one-dimensional and 

[ i i ) the two-dimensional cases .. 

( i )  The One-Dimensional  Case 

The structure which is  idealized as a periodic beam i s  assumed t o  be 

made of mylar w i t h  the  following  properties: 

p ( d e n s i t y )  = 1.3915 x l o 3  k /m 
2 

3 
g 

D = eh3/12(1 -v 

v = .3  (Poisson's  ratio) 

h = beam thickness  (to be determined) 

E = 2.757 & 1 0  N/m 9 2  

mb = ph (mass p e r  u n i t  a r e a )  
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i. 

The physical 

p1 

a1 

'a 

constants  of  the a i r  above the beam are 
3 , ' .  0.1227 k /m 

- g  
= 340.036 misec ' 

' -5  2 =. 2.88 x &O m /sec ' 

A- param&ric.study using the above values has  been carried  out  to 

obtai&a'i$ opt jml  design, i n  terms of  the  following  physical  quantities, 

which  meets the requirements set forth i n  reference [SI: 
. .  

(a) the periodjc length  

(b)  the beam thfckness h 

(c) the- rotational.  stiffness kr 

( d )  the fou,nd&?AeR material  properties (k l  , k2, nv) 
(e) the e las t ic i ty  of the supports kt ( in  the case of e las t ic  support).. 

As explained i n  the text, the one-dimensional case  includes both 

fnf ini te  and  MM:&e.basms having supports which  can be assumed transversely 

r i g i d  or   e las t ic .  In a l l  of these  cases, the computations are made for  the 

mid-span point ( x  = R/2). Also, the convection velocity U, i s  taken as .8 

of the flow velocity V which is chosen as 30.48 m/sec. The d i f f e r e n t  

numerical resul ts ,  corresponding to  different  cases,   are presented i n  the 

following  subsections. 

A. An Inf ini te  Beam  on Rigid Supports 

Our parametric study has been restricted w i t h i n  the  following  ranges 

of  values: 

= (2.54 % '6.35) ,x m 

h = (5. OS 25.4)  x m 

kl = (2.714 % 13.57) .x 10 N/.m ' 5  3 

k2 = (2.714,~ lo5 % 2.714)~ lo1' N/m5 
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= 0 ’L 2.714 x 10 N-s’ec/m - 4.448 x ’L 4.448 x 10-1 N-m/m/rad. 

4 2 
‘lV 

kr 

The resul ts  of   our  study  are  descr ibed below: 

(1) A t yp i ca l  response .o f  the beam, represented  by  the  square of the 

absolute  value  of  the  frequency  response  function, i s  shown i n  Fig. 8. It 

can be  seen from t h i s   f i g u r e   t h a t   t h e r e   i s  a  dominant peak occu r r i ng   a t  a 

ce r ta in  frequency, say fmax. The  peak region i s  the  dominant p a r t   o f   t h e  

s t ruc tu ra l  response and, therefore,   our  at tent ion will be focused on it. 

For   the  re la t ive ly   low  f low  ve loc i ty  ( V  = 30.48 m/scc) considered 

herein,  the peak response  frequency  appears t o  be near  the  fundamental 

natural  frequency o f   t h e  system. An est imate  of   th is  natural   f requency 

can be obtained by considering a simply  supported beam o f   l e n g t h  a res t i ng  

on an elast ic  foundat ion o f  s t i f f n e s s  kl (i .e., k2 = m). The natural  

frequency o f   t h e   n t h  mode i s  given  by 

fn = - 21T “b 
(7.5) 

I f  we use the  values: 

= 3.81 x 1 0  m - 3  

h = 5.08 X 10 111 
- G  

kl 
= 2 . 7 1 4  x 10 N/m 5 3  

then  the fundamental natural  frequency fl i s  approximately  equal t o  990 Hz. 

The peak frequency fmax computed by using  the above II, h and kl values as 

seen i n  Figs. 8 and 10 i s  900 Hz. The s l i g h t  discrepancy between 990 and 

900 i s  due to   t he   f ac t   t ha t   o the r   f ac to rs  which a f f e c t  f,,,ax have no t  been 

included i n  Eq. (7.5). Such factors  are  the  convection  velocity,  the 

ro ta t iona l   s t i f fness ,  and the  in teract ion between neighboring spans. 
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(2)  Within  the range of parameters investigated, the dominant wave 

component is found to  be associated w i t h  an n value between -2  and 2. 

Some samples of the  coefficients An's indicative of relative importance of 

different wave-components are shown i n  Tables 1-3. I t   i s  important t o  

mention that  these An's were  computed  from E q .  (2.33) or i t s  simplified 

versions and by truncating  the number of simultaneous  equations to  16 

(i .e. ,  N = ,8) ,  I t  was found from the computations that  a minimum o f  N = 8 

was necessary to  obtain a reasonable  accuracy  especially a t  or near  the 

peak frequency . 

i . .  

. .  

(3) The change i n  the  periodic  length, R, greatly  affects the 

structural  response  including i t s  amplitude, peak frequency, and the 

dominant wave length. As expected, an increase i n  R generally  leads  to 

a reduction i n  the peak frequency and an increase i n  the  amplitude. The 

wave length  of  the n t h  wave  component is   re la ted  to  the periodic  length R 

as follows: 

'n 1 
R fmax R 

- =  

n +  
uC 

where we assumed that   th is  component contributed t o  the  response a t  the 

peak frequency fmax. Since the dominant terms are  those  corresponding t o  

n between -2  and 2, the design criterion concerning the wave length should 

be checked a g a i n s t  the wave length of  each of  these components.  For 

instance, when n = %!, the absolute  value o f  the R.H.S. of E q .  (7.6) i s  

approximately  equal to  1/2 (since the value o f  fmax R/Uc I s  small within 

the range  of values b e i n g .  considered).  Therefore,  the  corresponding wave 

lengths X are  approximately equal to  R/2. Consequently, these two 

wave lengths  can easily  satisfy  the wave length  requirement (< - 2.54 x lo-' m 
-2.2 
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great  difficulty i n  meeting the wave length  requirement is  A-1. The  wave 

length  associated w i t h  this term i s  obtained from E q .  (7.6) (by putting n 

equal t o  -1): 

x- 1 - =  
1 
f II max -1 + 

"C 

(7 .7 )  

The absolute value of the R.H.S. of Eq. (7.7) i s  always greater t h a n  one. 

Therefore,  to  obtain  the  desired wave length, R has t o  be less than 2.54 

X 10-'m. However, such a small R would increase  fmax beyond the  desired 

frequency  range. As a compromise we have chosen R as 3.81 x 1O"'nl f o r  this 

parametric  study (which m i g h t  not satisfy  the wave length requirement b u t  

i t  keeps fmax w i t h i n  the  desired  frequency  range). 

I 

( 4 )  The thickness h has a great  effect  on the  amplitude and on the 

peak frequency of the  response. An increase i n  h sh i f t s  fmax t o  a higher 

value and generally  leads  to a decrease i n  the  amplitude. 

(5) The increase  in  the  stiffness k l  reduces  the amp1 itude and 

increases  the peak frequency fmax. (See  Fig. 9)  

( 6 )  The change i n  the  st iffness k2 does n o t  affect  the peak frequency 

appreciably. However, an  increase  in k2 increases  the  amplitude. The 

limiting  case o f  an inf in i te  k2 i s  simply t h a t  o f  an e las t ic  foundation of 

s t i f fness  k l .  The effect  of the change of k p  on the  response is shown in 

Fig. 10. 

( 7 )  The increase i n  the damping coefficient q v ,  for the range of 

values used, leads t o  a n  increase i n  the  amplitude w i t h o u t  any significant 

change i n  the peak frequency.  (See  Fig. 11)  The structural  response 

corresponding to  the  special  case of rly = 0 i s  shown i n  Fig. 12. 
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( 8 )  An increase i n  the  rotational  stiffness k, increases the peak 

frequency and s l i g h t l y  increases the amplitude. (See Fig. 13) 

Some representative  root mean square  values of the  response, and the 

wave lengths of the dominant  components are  shown i n  Table 4. Aslcan be 
I 

seen from this table, the root mean square  value, M r . , , s  , is smaller than 
I 

the  desired  values  for most of the cases shown. Also, the wave l eng th  X-1 

is always higher than the  desired  value  for the reasons we explained  before. 

I t  should be noted that,  unless  stated  otherwise on the figure i t s e l f ,  

the following  values have  been used i n  computing the  response shown i n  

Figures 8 through 13: 
I 

R = 3.81 x lo-’ m 

h = 5.08 x m 

kl = 2.714 x lo5  N/m3 

i 
I 

I 

k2 
= 2.714 x 10  N/m 5 3  

kr = 4.448 x lo-’ N-m/m/rad. 

= 2.714 x lo3 N-sec/m 3 
nV 

nr = .01 

ob = 

B. An Inf ini te  Beam on Transversely  Elastic  Supports - 

The only  difference between the  structural  configuration of the beam 

considered  here and t h a t  of an inf in i te  beam  on transversely r i g i d  supports 

i s  i n  the  introduction of  transversely  elastic springs, each characterized 

by a spr ing  constant kt ,  a t  the  supports.  Therefore, i n  this section, we 

are  mainly concerned w i t h  the  effect  af  these  transversely  elastic  supports 

on the  structural response. Such effect  is shown i n  Figs.  14-17. Figure 14 

shows a typical  response o f  the beam over  a wide range  of  frequencies, 

while Figs .  15-17 focus on the peak region  only. Based  on these  figures, 
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. we conclude that: 

(1,) The e las t ic  spr ing  constant, kt ,  has a  considerable  effect on the 

location of the peak frequency. As kt increases, the peak frequency is 

sh i f ted   to  a  higher  value u n t i l  i t  approaches that  o f  the  transversely  rigid- 

! support  case (i.e., kt = =). Thus, by choosing a small kt, i t  is possible 
I 

t o  reduce the  periodic  length  to  as small as 2..54 x lO-’m so that the require- 

ment fo r  wave length can  be sat isf ied w i t h o u t  raising fmax t o  outs ide  the 

desi red  frequency  range. 

(2)  The  ampl i tude  of  the  response  increases  as  the  value of kt 

decreases.  Therefore,  a  suitable  choice of kt can help i n  br inging  the 

ampl itude  to  the  desired  value. 

Typical  values of the  root mean square  displacements and the wave 

length  of  the dominant terms are  shown i n  Table 5. I t  can be clearly seen 

that,  except  for the f irst  one, the amplitude and the frequency of a l l  cases 

presented f i t  the  desired ranges. Moreover , the wave length A-l o f  the 

component n = -1 i s  very close  to the desired  value of 2.5 x lO-’m (the 

difference is  approximately 1%). 

I t  is  to  be noted that  the following  values have  been  used i n  computing 

the response shown i n  Figs.  14-17: 

R = 2 .54  x 10-3m 

h = 5.08 x 10-6m 

kr 

‘Ir = -01 

= 4.448 x lo-’ N-m/m/rad. 

= 2.714 x IO3 N-sec/m 3 

nb = 0.0 
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Table 1. Sample o f   t h e   C o e f f i c i e n t s  An i s  ( in  meters) 
!- - -  - I  1 I ! ! I , .  I . . " . .  ~ I ! ! j - - .   - .  

.- -. -1 
n j  -8 -7 : -6  -5 ' -4 -3  -2  I -1 o *  : i 

.- . . .  . . . . . . .  . . .  . . . . .  -. , 

Re{Aril 4.26 x 10-56.35 x i1.03 x 10-4jt.8S x i3 .88  x 10-41.19 x -1.06 x 1 8 - 1 . 7 5  X 10-3 ' l .29  X 
! 

" - .... . . -  ! . . . . . . . .  ... 1 .  . . . .  . ; .  . . . . . . .  

I ' Im{An) 1 - 2 . 2 6 ~ 1 0 - ~   - 3 . 4 3 ~ 1 0 - ~   ; - 5 . 5 8 ~ 1 0 - ~   \ 1 . 0 3 ~ 1 0 - ~  ; - 2 . 2 6 ~ 1 0 - ~ ' - 7 , 5 ~ 1 0 - ~   j 5 . 5 ~ 1 0 - ~   i . 5 x l O - l  ~ -8.09~10- l !  : 

i..- i 

I 

.... . ........ .......... . . . . . .  ! ! I 4 - ., , . .  
i 

- ;  n j 1 - 1  2 3 ! 4 5 6 7 . !  8 , .  - 
! 

y t" -. ! 
I I 

' I  - . . . . . . .  ! . . . . .  ..L . , "  . ... _, i 
-3 I 

i - 7 . 4 4 ~ 1 0   ) - 9 . 6 5 ~ 1 0 - ~   - 3 . 6 3 ~ 1 0 - ~  j - 1 . 7 8 ~ 1 0 - ~   - 1 . 0 1 ~ 1 0 -   , - 6 . 0 9 ~ 1 0 - ~  j - 4 . 1 9 ~ 1 0 - ~  

' 3 . 1 1 ~ 1 0 - ~   : 4 . 0 4 ~ 1 0 - ~  ' 1 . 5 4 ~ 1 0 - ~  : 7 . 7 7 ~ 1 0 - ~   4 . 4 7 ~ 1 0 - ~   2 . 8 4 ~ 1 0 -  - - ..,i 
. . ~  . . .  .. - i 

4 :  - 
) .  i .  . . . . . . .  i I 

. .  

1 x 
! I 

L .. i 

R = 3.81 x m; h = 5.08 x m; '7, = 2.714 x 10 N sec/m 3 3 

kl = 2.714 x 1 0  N/rn3; k2 = 2.714 x 10 N/m3; kr = 4.448 x lom3 N-m/m/rad; '1, = .01 5 5 
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Table 2. Sample of the Coefficients A 's (in  meters) n 

. . . .  . . . . . . . . . . . . . . . . .  . . . . .  . . . . . .  

1 
. .  "I. 

[n"I -8  ... ; ; ! . -7 L - ....... 1.. i .............. -6 ; ........ -5 I -4 
I 

i Re{An) 1 -2.08~10-~~-3.04~10-~ k i 8 ~ 1 0 - ~  'i -9.14~10-~ i -1.93~1O-~ 

1. 

I 
.. ....... .I. . . . . . . .  . . . . . .  

1 i ! 
8.128~10-~  11.33~10-~ I ; 2.33~10:' 14.57x10-7 
........... - ... . . . . . .  . . . .  - t -  . .  

. . . . . . . . .  - . . .  _ .  . .  

/ Re{A,) I ,5.5~10-~  :8.89~10-~  !3.81~10-~  1.18~10-~  ,6.29~10-~ 
: i  ! 

I A".-. . . . . .  . !  . . .  ........ 1 Im{An) 13.68xlO-' \-3.73~10-~ .-9.6x1Oe7 -4.01~10-~  ,-2.05~10-~ 
I ! 

""" 
1 .......... 

* 
-1 

$. 63x10-3,  )-8..05~10-~ j 
I ..... " .... ., ....... " ." ._ ..... 
I I 

. . . . . . . . . . . . . .  ." 
i 

..... i 1 
- i 

! 

. . .  j .  i 

kl = 2.714 x 10 5 3  N/m ; K2 = 2.714 x 10 5 3  N/m ; kr = 4.448 x 10-3N-m/m/rad; qF = .01 

f = 898 HZ (not near a peak) ; * dominant  term 



Table 3.  Sample of the Coefficients An's (in  meters) 

". .. - ...... , . . . . . . . . .  . . . . . .  

n -8 -7 
; 1 

. .  .,.- ......... 

Re{An) -2. 49~lO-~ .-3.81x10e3 I 

Irr.{An) 6. 85~1O-~ .1.067xlO : ,  

- ... . 

\ 

-3 j ,  

i - !  I I 
i 

I '  . r  
-6 i -5 -4 -3 - 2  I -1 0 I 

! 
i 

I . . . . . . .  . -. - - " . ." . . . .  . . .  ! i -; 

-6.09~10-~ i-1.1~10- :-2.36~10-~ :-6.59~10-~ -4.26~10-1  j6.19~10-~ ' 1.0287 

L.72~10-~ '3.04~10-~ 6.6~10-~ !1.82~10-~ :1.193x10 -1 : -1.73~10-~ 3.20~10-1 

... -.  ._ ...... - . . . . . .  
- 1  . 

... " . . . .  
t i 

?- . . . . . .  

7 

.. , ........ -. ...... -. . . . . . . . .  

8 

. . . . . . . .  

- 

i Re{A,} -1.27 :1.09xlO- ; 3.23~10-~ :1.42~10-~ 7.54~10  :4.47xlQ : 2.87i10q3 :1.95~1Q-~ 

i Im{An) 1 3. 55x10-1  ,-3.06xlO -9.04~10-~ j -3.96~10 
I j I 
L I _ _  . .  s .... - . . .  - . . . . . . .  . . I .  . . . . . . .  

-3 ! -3 1 j - 
I 

~ . . . . . . .  . I  

I i 
. . . . .  ! 

1 . .  ! 

-2 I -3  ~Z.108~1O~~i-l.24~10~~ 1-8.05~10 -4  1-5.46~10-~ I - 

R = 2.54 x m h = 5.08 x m \ = Q.0 N sec/m 3 

kl = 2.714 x l o 5  N/m k2 = OJ N/m3 Kr = 4.448 x loa3 N-m/m/rad; q, = .Ol 3 

f = 1585 HZ(peak frequency);  * dominant  term 
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Fig.  8 Response of an Infinite Beam (Transversely Rigid  Supports) 
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Table 4. Sample of  Displacements  and Wave Length  of   an  Inf ini te  Beam on Transverse ly  Rigid Supports 

I 
i f  ! Peak , max range I 

j N/m3 \ N/m3 ' N-sec/m 3 
N-m/m/rad HZ HZ m I m i m 1 

! I 
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+---"-- "--"" ! 
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II I 1  ' 
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Table 5. Sample of Displacements  and Wave Leng.ths o f   a n   I n f i n i t e  Beam on Transversely Elastic Supports 

k2  range 

N/m3 I HZ m 
I 

I .... . .  I "" "1 _.""" - . . . .  " . . . .  

1 
2 . 7 1 4 ~ 1 0 ~   2 . 7 1 4 ~ 1 0 ~   4 . 4 4 8 ~ 1 0 - ~   2 . 7 1 4 ~ 1 0  1513  1475-1539 1 "_" - 4" "_ "1" 4 

i . . . . . .  . . . .  .. +... . . . . . . .  
I 

II I I 1  I t  
I i 2 .714~10 1 1189 j 1160-1210 1 4 . 3 1 8 ~ 1 0 - ~  

"̂ .. - .- ..... 

m l m  
...... ....... 

. . . . .  . .  
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I _" i - t  i 
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' t  . ' ' .  I 
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! ! 
+- - I 
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- 3  j 

! 

I 

! i _. ." -. - .  ..-i - -. j. - - ........ ... . .... .. . . .  . . . . . . .  , . .  
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1 

5.1 x lo-' j 2 . 7 9 ~ 1 0 - ~ /   1 . 3 3 ~ 1 0  
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! 1 

R = 2.54  x m; h = 5.08 x loe6  m; k = 2.714  x  10 N/m , q, = .01 5 3  
1 
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C. Finite  Periodic Beam . .  . . ,  
.. . . .  

In this section, numerical results of the  structural response of a 

5-span periodic beam will be presented. These resul ts  corresppnd to -two 
v 

cases:  (a) the interior  supports  are  transversely r i g i d ,  (b) the  interior 

supports  are  transversely  elastic. In both cases, each of the(end  supports 

i s  assumed t o  be r i g i d  i n  the   t ranrerse   direct ion,  and to  posiess a 

ro.tationa1  stiffness kr. The physi:cal data used i n  the computations for 

these cases  are  the same as  those used previously  for  the corresponding 

infinitely-long beams. Also, t h e '  response  referred t o  i s  for  the midpoint 

of the first span. 

(a)  Transversely Rigid Interior Supports 

Comparisons  between the  structural response of a f i n i t e  beam  and that  

of an inf ini te ly  long beam, other  physical  data  being  identical:.,  are 

presented i n  Figs. 18-20. Each of these  figures shows the  squire of the 

absolute  value of the frequency  response  function vs. the frequency. 

Figure 18 shows the comparison when a visdoelastic  foundation i& used for  

both f i n i t e  and inf in i te  beams, while i n  the  case of Figs. 18 'a6d 20 the 

foundation is purely  elastic. 

- ,  1; 1 

As expected,  the  response  curve for each f i n i t e  beam contains multiple 

peaks clustered i n  frequency  zones. W i t h i n  the  frequency  range; shown i n  

the figures,  the  response peaks are  clustered roughly i n  the first free- 

wave propagation zone [15].  The  number  of peaks i n  each zone is expected 

to  be equal t o  the number o f  spans of the  finite  periodic beam.:  However, 

i t  is possible  that some of those peaks migh t  n o t  appear  because of the 

amount of damping present i n  the system or  because  of the  choice of a 

coarse  frequency  interval i n  the computations. , ,  . 

92 



' <  lo-lo 

0 ,  

10-l2 

1*-13 

1 0 - l ~  

- f i n i t e  beam 

i n f i n i t e  beam " -" 

frequency, f (Hz) 
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(b) Transversely  Elastic  Interior Supports 

In this case,  there  are  four  free waves  which migh t  propagate i n  the 

f i n i t e  beam,  compared to  only two f ree  waves i n  the case of  transversely 

r ig id-suppor t  case. T h i s  increase i n  the number  of waves, and the i l l -  

conditioned  matrices  involved make the computations more complicated. More 

specifically,  the vandermonde matrix given i n  Eq. (3.53) and the system of 

simultaneous  equations  relating  the unknowns wk's ( i - e . ,  Eq.  (3.66)) are 

very ill-conditioned (meaning a small error in the  elements of these  matrices 

would magnify leading t o  much 1 arger  errors). A1 t h o u g h  there  are  special 

techniques t o  deal w i t h  such matrices  (see Appendix 'I), the computational 

accuracy can suffer  greatly from any numerical errors which might ar ise  i n  

the  course of computations. 

A comparison between the  structural re.sponse o f  a f i n i t e  beam and t h a t  

of an inf in i te  one, other  physical  data being ident ical ,   i s  shown i n  Fig. 21. 

Only the  response  near and w i t h i n  the f i r s t  free-wave propagation zone i s  

shown i n  the  figure. Again, the  response  contains  multiple peaks clustered 

roughly within this free-wave propagation zone. 'However, the number o f  

peaks as shown i n  F i g .  21 exceeds the expected number, t h a t  i s  the number 

of spans of the   f in i te  beam. I t  i s  believed t h a t  some o f  those peaks have 

resulted from the numerical errors which might  have occurred due t o  the 

ill-conditioned  matrices  already mentioned. 

I 

( i i )  The  Two-Dimensional  Case 

In this case,  the panel i s  assumed t o  be  made of  mylar of  which the 

physical  properties have  been previously mentioned i n  connection  with  the 

one-dimensional case. The wires are assumed t o  be  made o f  steel  which has 

the  'following  properties: 
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G = 7.92 9 l o l o  N/m2 

= 7.68 x 10 kg/m 3 3 

= 9.65 . x  10 N/m 7 2  

= 2.068 x 10l1 N/m 

PW 

'a 
2 

Again, a  parametric study using the above values has been carried  out 

to  obtain an optimal  design, i n  terms of the fo l lowing  physical  quantities, 

which meets the  requirements set   for th  i n  reference [SI: 

(1)  the  periodic  length R 

( 2 )  the panel thickness h 

(3) the panel w i d t h  b 

(4) the wire  diameter D 

(5) the cavity depth d 

(6) the  tension  applied t o  each wire, T. 

Before presenting  the  results o f  our parametric  study, some introductory 

remarks might  be helpful: 

(a )  In l i g h t  o f  the  results o f  the  parametric study carried o u t  f o r  

the one-dimensional case, we have  chosen R as 2 . 5 4  x 10-3m. This value of R 

i s  expected to  be near  the  "best"  choice for meeting the wave length 

requirement  and, a t  the same time, keeping the peak region w i t h i n  the 

desired frequency  range. 

( b )  The wire  diameter has been chosen as  proportional  to  the panel 

thickness h ,  namely 

D = yh (7.8) 

The propor t iona l i ty  constant y can  be chosen arb i t ra r i ly  b u t  one should keep 

in mind that  a  large y would  make the  wires  act  as r i g i d  supports  (a reason- 

able  choice m i g h t  be 2-6). 
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3j (c) To make sure  that  the  allowable  stress  of  the  wire materia.1,  ua, 
,' 

would not be exceeded, the tension T has  been chosen as 

(d) I t  is  to  be noted tha t  a1 1 computations for  structural response 

have  been carried  out a t  the midpoint (x  = E/2, y = b/2) of the first panel. 

Also, the number of modes has been chosen as 5 i n  the  x-direction and 14 i n  

the y-direction. 

(e) For simpler  representation of the numerical r e su l t s ,   l e t  us 

rewrite Eq. (5.4) as 

where H is  the  "total" frequency  response  function of the panel and is  

given by 

A 

(7.10) 

(7.11) 

The results of our parametric study are summarized as follows: 

(1) A typical  relationship between I H [  and the  frequency f is  shown ^ 2  

i n  Fig.  22 (peaks are n o t  drawn t o  scale). As can. be seen,  there  are two 

peak regions:  the f i r s t  one occurs a t  a very low frequency  range while the 

second one occurs a t  a much higher range. When the  values ( i n  m e t e r s ) ,  

h = 8 . 9 8 ~ 1 0 - ~ ,  R = 2.54x10m3, b = 1 .778~10-1  and d r 2 . 5 4 ~ 1 0 - ~  were used  in t h e  

computations, the first peak  reglon  was  found  around 10 Hz and the   second one 

near 990 Hz. 
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To explain  the  occurrence of these two  peak regions,  consider  a simpler 

case of a panel of length R and w i d t h  b which is  simply supported  along a l l  

sides and vibrating i n  vacuum. Assuming a  sine  series  solution i n  bo th  

directions,  the  natural frequency for  the n t h  mode i n  the x-direction and 

the 'mth mode i n  the  y-direction  for such a panel is  given by 

(7.12) 

where p is the panel mass per u n i t  area (= m / h ) .  Using the  values  for 

h,  E, b and d mentioned above i n  Eq. (7.12)  gives 
P P 

f n  ,m = 9.12 {loon2 + (m2/49)1 

The f irst  few natural  frequencies  (i.e., n = 1)   are   a l l  very close t o  912 Hz. 

Therefore,  the second peak region i n  F ig .  22 i s  mainly due to  the panel 

resonance. The presence  of the  external flow and the  cavity appears to  

result i n ,  only minor s h i f t  i n  resonance  frequency. 

Secondly, if  we consider  a simply supported  wire of length b, area % I 

and subjected to  a tensile  force T ,  then the  natural  frequency of the mth 

mode can be  computed from 

(7.13) 

For a  wire  diameter of .001 inches,  the second term under the  square  root 

s i g n  of Eq. (7.13) is  much smaller than the f i r s t  one. Therefore, 

f m  2b w w  5 g , / F =  3.15 m 
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For 1 " e rn e 14, the natural  frequencies have a range 3-45.Hz. T h i s  means 

tha t   the   f i r s t  peak region i n  Fig.  22 i s  mainly due to  the  wire resonance. 

The first and second peak regions of ' the panel response are  plotted i n  

much larger  scales i n  Figs .  23 and 24, respectively. 

Since  drag  reduction is  expected ' to  'depend primarily on the second peak 

region  response,  our  attention wil-1' be focused  henceforth on this region and 

any reference  to  the  response will have the  restricted meaning of the second 

peak region. 
, .  

(2) The panel thickness has a great  effect on both the amplitude and 

the  location of the peak region. An increase i n  the  thickness h shifts   the 

peak region to  a higher  frequency range and generally  reduces  the  amplitude. 

(3 )  The e f fec t  of the bending r igidi ty  of the  wire on the panel 

response  represented by the term EwIw a4w i n  Eq.  (4 .36)  is  negligible. 
a v  

(4)  Neglecting the  contribution o? the  torsional moments acting on 

the  wire,  represented by the term r(m', n ,   n ' )  i n  E q .  (4 .40) ,  to  the  virtual 

work s l ight ly  reduces the computed response  amplitude. 

(5) The change i n  the  tension T has very 1 i t t l e   e f f e c t  on the 

structural response of t h i s  region (2nd peak), as  long as  the  tensile 

stress  in  the  wire remains unchanged (Thus, the  cross-sectional  area of 

the  wire must be changed correspondingly). 

(6)  The change in  the panel wid th  (1.778.Q 3.048) x 10-lm significantly 

alters  the  locations and the amplitudes  of  the  individual peaks of this 

peak region  (see Figs .  24 and 25). 

' ( 7 )  No significant change i n  the  structural  response was noticed when 

the  cavity depth was changed (2.54 Q 1 . 2 7 ) ~ 1 0 - ~ m  {see Figs. 24 and 26). 

Again, i t  is to  be noted that  the  following  values have  been  used 

i n  computing the  response shown i n  Figs. 22-26: 
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The root mean square  value of the  displacement, , i s  computed 

from Eq. (5.6 1. A typical W r e m  ~ of 1.74 x m has been obtained 

when us ing  the above data and choosing a cavity depth d = 2.54 X 1 0 ' ~ m  and a panel 

width b = 1.77sX1ij1,,,. T h i s  value of W r m m a s  is based on the second peak 

+equency range 970-1045 Hz, and i t  can be reduced by including  structural 

damping i n  the computations.  Therefore, damping materials  or  devices can 

.- - 

perhaps be used to  adjust  the  response  level  to w i t h i n  the desired range. 

Finally,  the  spectral  density QP of the induced pressure P, is 
1 1  

plotted i n  Fig. 27 over a frequency  range of  5-2000 Hz, and again i n  

Fig.  28 i n  a larger  scale w i t h i n  the second peak region. 
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Fig. 23 Panel Response (1st  Peak Region). 
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Based on this, i,nvestigation, we can c8nclude.  that:' 

( 1 ) .  I t  is possible t o  design. a periolf'ic structure which, .'when''excited 

by t u r b u l e n t  boundary layer  pressure'  'flucfhations, would  have a narrow'-band 

response. Wi th in  this narrow-band: region (peak region), the response can 

be adjusted  to  satisfy .predetermineh -ve&irements by changing.'some 

structural   or flow  parameters. Such requirements can be the  amplitude, 

propagation  speed, and  wave length o f  the dominant component of a  packet 

of waves constituting  the narrow-band response. 

. .  . .  

L. , . : .. . 

:. . I  

( 2 )  I t  has been found from the parametric  study  that the membrane 

thickness and the  periodic  length  of  the  structural  construction 

significantly  affect  the  location of the peak region,  the  amplitude, 

and the wave length of the dominant response.  Accordingly, by suitable 

choice o f  these two parameters,  the  periodic  structure would  have a 

resonant mode v i b r a t i n g  a t  a  frequency tha t   f a l l s  w i t h i n  the energy- 

containing  spectral  range of the  exciting  turbulence  pressure  field, 

leading t o  a  favorable  interaction. 

(3)  Structural damping  of the membrane or  other damping devices 

such as  viscoelastic  foundations can be used to  adjust  the amplitude of 

the  vibration  to w i t h i n  a  desired range. 

(4) As far  as  the  structural  response is  concerned, the effect  of 

the additional  pressure induced by the  structural motion  above the 

structure is  relatively small. However, this conclusion is  based on  an 

analysis where viscosity i n  the f l u i d  has  been neglected. A more accurate 

representation of the induced pressure can  be obtained i f  the  viscous 
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.,*, . . .  

effects can be included i n  the governing wave equation. A t  present, 

there are  no analytical  solutions , .  which,,take  viscous  effects i n t o  account. 

(5) The wave propagation  qpproach.is most simple and convenient i n  

the analysis o f  i n f in i t e ly  long  ,periodic  structures. However, this 

advantage diminishes greatly  for!  f inite.   periodic  structures.  and the. 

analysis i s  very much similar  to,  t h a t  o f  the transfer  matrix method. 
, 

. .  , 

i 
I 
i 
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APPENDIX I 

SOME BRIEF COMMENTS ON THE COMPUTER PROGRAMS USED 

In this Appendix, no attempt  will be  made t o  reproduce the complete 
I .  

computer  programs  used or  to  discuss  them'in  detail. However, i t  is f e l t  

useful to  comment very briefly on some of the  procedures and subroutines 

which  have  been helpful i n  obtaining  the numerical resul ts .  

(1) In solving  the system of simultaneous  equations, Eq.  ( 2 . 3 3 ) ,  

Eq.  (4.45) o r  (4.58), we have  used the I.M.S.L. subroutine LEQTlC. 

(2)  The eigensystem  subroutine package EISPAC was used t o  obtain 

the  eigenvalues of the matrix i n  E q .  (3.54). * 
(3)  The so lu t ion  o f  the  ilT-conditioned system of  simultaneous 

equations, Eq. (3.66), was made possible by use of the U.O.I. l ibrary 

subroutine GAUSZ. T h i s  subroutine employes  Gauss elimination  technique 

(with complete p i  v o t i n g ) .  

(4)  The inverse of the Vandermonde matr ix  i n  E q .  , (3.53) was obtained 

using the eigensystem  subroutine package MINFIT. This  subroutine uses a 

singular value  decomposition method t o  solve a system o f  equations A X  = B. 

The inverse o f  matrix A i s  obtained as  a special  case  in which B i s  replaced 

by the  identity matrix.  

(5)  Integration of E q .  (5.6) was carried o u t  u s i n g  Bode's 5-point 

integration method [26], namely 

f ( x )  dx = 45 2h (7f0 + 32f, + 12f2  + 32f3 * 7f4) 
xO 

* I t  is  possi.bl e t o  solve  the  general  ized  eigenvalue problem  of 
Eq. (3.50) directly by the use of the LZ-algorithm [31] ( i .e . ,  w i t h o u t  
inverting  the  matrix Q ) .  



where 

h =  x4 - x. 
4 

fj = f (xo  + j h )  ; j = 0,1,2, ...) 5 .  
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